Ljud för en bild i en tidning

Metka

I den här aktiviteten utforskar du en bild från en tidning eller en tecknad film genom att fundera på hur bilden låter.

Verktyg:

  • tidskrift (för barn)
  • Verktyg för att skapa ljudlandskap: skedar, burkar, pennor, skrammel, etc..

Fokusera på ljud

Läraren ber gruppen att vara mycket tyst och lyssna på vilka ljud som kan höras i rummet. De tänker också på de ljud som de hör i köket hemma, eller ute på lekplatsen eller på gatan.

Välja och titta på bilden

Gruppen letar efter en bild i en tidning och skapar en ljudvärld för den. Diskutera bilden tillsammans: vem eller vad finns på bilden? Vad är stämningen i bilden, är den glad, sorgsen, sommaraktig? Bilden kan också vara en tecknad film.

Utformning av ett ljudlandskap

Fundera tillsammans på hur berättelsen kan låta. Läraren ger barnen olika verktyg för att skapa ljud och tillsammans experimenterar de för att se vilka ljud de kan skapa. Om den valda bilden är en tecknad film kan läraren läsa upp den igen, och nu kan barnen förgylla berättelsen med ljud.

Luktar bilden?

Efter att ha lyssnat på ljudberättelsen kan de fundera på vilka dofter eller lukter som flyter in i deras näsborrar i köket eller på gatan. Vilka dofter eller lukter kan förknippas med den valda bilden eller teckningen?

 

Idén är hämtad fråm metka – Mediakasvatuskeskus

Islyktor

Material

  • Stor plastmugg
  • Liten plastmugg
  • Dekorativa bitar (pompoms, pärlor, piprensare, glitter, tallbarr, tallkottar, torkade bär etc.)
  • Hushållsfärg
  • Band
  • Vatten
  • En frys eller så måste den vara under noll ute
  • Batteridrivet ljus (eller värmeljus)

Instruktioner

Det första steget är att bestämma dina dekorationer. Vi tyckte att det var bäst att ta piprensare och vrida dem så att de snurrade upp på insidan av den stora koppen. Dessa fungerade som din krans och som en plats att sätta alla dina andra kulor så att de stannade på plats.

Placera nu försiktigt dekorationerna så att de balanserar på kransen. Detta kan vara utmanande och de kommer att röra sig när du tillsätter vatten, så stressa inte för mycket.

Proffstips!  Om du vill vara mer miljömedveten fungerar naturmaterial som tallbarr, små kottar, torkade bär och till och med små stenar eller kristaller också vackert. Nyckeln är att de måste vara små.

När du är nöjd med dina dekorationer skjuter du den lilla koppen inuti den stora koppen. Tejpa fast den på plats så att toppen av kopparna är i jämnhöjd med varandra.

Tillsätt några droppar hushållsfärg i vattnet.

Börja försiktigt att tillsätta vatten mellan de två kopparna så att vattnet bara går in i den större koppen. Du måste lägga till lite vikt i den mindre koppen för att hålla den på plats och förhindra att den dyker upp. Vi lade till ett par stenar i vår för att hålla den på plats.

Fyll tills vattnet bara är ett par centimeter från toppen. Det är viktigt.

Slutligen placera lyktorna i frysen (eller utomhus) i 5 timmar eller tills de är helt frysta.

Ta en stund med vetenskapen

När den är frusen, ta en stund att titta på din skapelse. Du bör märka att trots tejpen och vikterna är den mindre koppen högre och isen är högst upp på den stora koppen. Detta beror på att vatten expanderar när det fryser. Detta är ett fantastiskt tillfälle att se detta i praktiken och diskutera vad som händer när vatten byter tillstånd.

Få loss lyktorna

Ta nu försiktigt bort den inre plastkoppen och sedan den yttre plasten upp. Du kan behöva klippa kopparna för att få bort dem. Klipp bara försiktigt kanten med en sax så ska du kunna skala av dem.

För säkerhets skull kan du använda batteridrivna ljus, plus att de inte smälter din lykta som ett värmeljus.

Tänd ditt ljus, ställ ut det i den vintriga kylan och njut av skönheten i din skapelse!

Ide från STEAMPoweredFamily.com

Hur stark är spaghetti?

Hur stark är spaghetti?  Utmana barnen att uppfinna ett sätt att ta reda på det!

Material

  • 1 paket spaghetti
  • 2 ark styrofoam
  • Böcker
  • Träklossar

Vi började vårt projekt med att undersöka hur mycket vikt spaghetti kan hålla när den är vertikal.  Vi upptäckte snabbt att spaghetti inte är särskilt stark!  Den böjer sig väldigt lätt och går lätt sönder.

Jag frågade pojkarna om de trodde att flera bitar spaghetti skulle kunna hålla mer vikt och kanske till och med hålla upp en bok.  Vi försökte sticka in ungefär 20 spaghettibitar i styrofoamskivan.

Vi bestämde oss för att se om spagettin kunde hålla upp vår stora historiebok, och det kunde den naturligtvis inte…

Vi försökte igen med vårt test och använde MASSOR av spaghetti.  Jag kommer inte ihåg hur många bitar det var, men jag tror att det var någonstans i närheten av 200.  En av utmaningarna med att balansera vikt ovanpå spaghetti är att den böjer sig och svänger väldigt lätt!  Vi lyckades bra med att lägga en annan styrofoambit ovanpå spaghettierna och sedan lägga vikt ovanpå den.

Vi lyckades få upp 6 brädböcker ovanpå spagettien!  Det var inte så mycket vikt, men det är ju spaghetti!

Sedan utarbetade vi ett andra test för att undersöka spaghettis styrka när den ligger horisontellt.  Aidan byggde en liten bro av klossar och lade spagettien över bron.  Vi kunde dra ut spagettin ur styroporet och använda samma bitar.

Aidan lade block ovanpå spagettien på varje sida för att hålla den på plats.  Sedan började han lägga till vikt i mitten.

Överraskande nog höll spagettien mycket vikt!  Jag tänkte att den skulle vara starkare på det här sättet än att stå vertikalt, men den var starkare än jag trodde att den skulle vara.

När Aidan lade till mer vikt i mitten var han tvungen att lägga till mer vikt på sidorna för att hålla spagettien på plats.

Vad kan vi lära oss om materialens styrka av spaghetti?

Den här artikeln från Scientific American (på engelska) förklarar vad ingenjörer letar efter när de väljer material för att konstruera en bro, och den innehåller ett snyggt experiment för att testa spänning och kompression i en bro gjord av spaghetti.  Detta är förmodligen bäst för barn från 13 år och uppåt, men föräldrar och lärare kan också sammanfatta informationen för de yngsta eleverna.  Den är inte svår att läsa och jag lärde mig definitivt något!

Utmana barnen att hitta på ett eget sätt att testa spaghettis hållfasthet!  Ha kul med att undersöka!

 

Tack FrugalFun4Boys.com för tipset!

Fallskärmsutmaning

Översikt

Lär dig om luftmotstånd samtidigt som du tillverkar en fantastisk fallskärm! Designa en som kan falla långsamt till marken innan du sätter den i luften, testa och gör ändringar under tiden. Förhoppningsvis kommer din fallskärm att sjunka långsamt ner till marken och ge din vikt en behaglig landning. När du släpper fallskärmen drar vikten ner strängarna och öppnar upp en stor yta av material som använder luftmotståndet för att sakta ner. Ju större yta, desto större luftmotstånd och desto långsammare faller fallskärmen.

Genom att skära ett litet hål i mitten av fallskärmen kan luften sakta passera genom den i stället för att strömma ut över ena sidan.
bör hjälpa fallskärmen att falla rakare.

Material som behövs:

  • En plastpåse eller ett lätt material
  • Sax
  • Snöre
  • Ett litet föremål som fungerar som vikt, en liten actionfigur är perfekt.

Instruktioner

  1. Skär ut en stor kvadrat ur plastpåsen eller materialet.
  2. Klipp av kanterna så att det ser ut som en oktagon (en åttasidig form).
  3. Klipp ett litet hål nära kanten på varje sida.
  4. Fäst 8 stycken snören av samma längd i varje hål.
  5. Knyt snörbitarna till det föremål som du använder som vikt.
  6. Använd en stol eller hitta en hög plats för att släppa fallskärmen och testa hur bra den fungerade,

Kom ihåg att du vill att den ska falla så långsamt som möjligt.

Ytterligare resurser

Tänk på det! Fungerar större fallskärmar bättre? Hur skulle du ändra konstruktionen för att kunna bära en tyngre eller lättare vikt?

  1. Hur fungerar en fallskärm? https://tinyurl.com/we6r5nj
  2. Fallskärmar och vetenskapen om luftmotstånd: https://tinyurl.com/yakmqzkn

Tipset är hämtat från www.projectexploration.org

Bygg en pappersraket

Material

  • Två pappersbitar
  • En sax
  • Blyertspenna.
  • Sugrör
  • Linjal
  • Ett fritt utrymme där du kan skjuta upp dina ”raketer”, t.ex. ett stort rum, en hall eller ett vindstilla område utomhus.
  • Måttband (valfritt)

Förfarande

  1. Skär ett papper i fyra mindre rektanglar genom att dela det på mitten på längden och bredden. På så sätt kan du göra fyra raketer.
  2. Linda en av pappersrektanglarna runt en blyertspenna så att den bildar en cylinder, med papperets långa kant längs med blyertspennans längd.
  3. Tejpa ihop cylindern så att den inte rullar upp sig (men tejpa inte fast den på pennan).
  4. Skjut av cylindern från pennan. Kläm ihop den ena änden av cylindern och förslut den med tejp. (Detta är den ”främre” änden av din raket.) Låt den andra änden vara öppen. Detta kommer att bli din första raket, utan fenor.
  5. Med gott om utrymme framför dig – och utan hinder, till exempel möbler eller människor – gör dig redo att skjuta upp din första raket! Skjut den över ett sugrör. Rikta sugröret framåt och blås sedan in i det så hårt du kan. Titta på din raket när den flyger.
  6. Hur långt går den? Flyger den rakt eller tumlar den i luften?
  7. Starta din raket några gånger till för att se om den flyger på samma sätt. Om du vill registrera raketens flygavstånd, se till att starta den från samma plats varje gång och mät till landningsplatsen med ett måttband.
  8. Gör ytterligare en pappersraket enligt de föregående stegen. Kom ihåg att klämma ihop den ena änden och tejpa ihop den.
    Bild på pappersraket.
  9. Till den här raketen ska du dock göra fenor. Klipp ut två rätvinkliga trianglar (med en 90-graders vinkel i den ena hörnan) från den andra pappersbiten. Trianglarnas långsidor ska vara ungefär åtta centimeter långa. Du viker varje triangel för att göra två fenor, så att du får fyra fenor totalt.
  10. Rita en linje som delar den ena triangeln på mitten (från 90-gradershörnet till mitten av triangelns långsida).
  11. Rita två linjer parallellt med den första linjen (en på varje sida), ungefär fem millimeter från den.
  12. Vik nu triangeln uppåt längs dessa två linjer. Resultatet ska bli två trianglar som sticker upp i luften (fenorna), med en platt del som förbinder dem emellan.
  13. Tejpa fast den platta delen på sidan av din cylinder, mot den öppna änden (basen, eller botten, på din raket).
  14. Upprepa dessa steg för den andra triangeln, och tejpa fast den på din cylinder på motsatt sida av den första triangeln. Resultatet ska bli fyra fenor som bildar ett ”+” när du tittar på raketen från båda ändarna. Om det är nödvändigt, böj fenorna så att de har 90 graders avstånd till varandra.
  15. Skjut den nya raketen på sugröret och skjut upp den.
  16. Hur långt går den här raketen? Hur är dess flygning jämfört med din första fenlösa raket? Går den längre? Tumlar den eller flyger den rakt? Tror du att fenorna bidrar till att göra din raket mer stabil?
  17. Starta den några gånger till. Om du mäter flygsträckan för varje raket, använd ett måttband och anteckna hur långt den flög.

Vad hände?

Du borde ha sett att din fenlösa raket flög rakt till en början, men att den snabbt kom i en spiralrörelse och tappade kontrollen. Den kan ha tumlat genom luften och fladdrat till marken, nästan som ett löv som faller från ett träd. Detta beror på att raketen inte hade några fenor som höll den stabil. Om den började svänga bara en liten bit skulle den börja svänga ännu snabbare tills den helt förlorade kontrollen. Däremot borde din andra raket med fenor ha flugit rakt och färdats mycket längre som ett resultat av detta. Detta beror på att fenorna hjälper till att hålla raketen stabil, eller riktad i samma riktning. Om raketen vänder lite grann hjälper fenorna till att vända den tillbaka i den ursprungliga riktningen.

Hoppa som en groda

Hoppa och mät hur långt du hoppar på olika ytor med olika hoppmetoder.

Vad du behöver

  • Arbetsblad
  • Blyertspenna
  • Måttband eller annat mätverktyg
  • Kompanjon

Vad man ska göra

  1. Hitta en öppen yta för att göra din hoppning.
    (Använd ytor som gräs, grus och trä.)
  2. Gör en startlinje.
  3. Uppskatta hur långt du tror att du kan hoppa.
  4. Hoppa så långt du kan från startlinjen.
  5. Mät längden på det här hoppet och registrera det på arbetsbladet.
  6. Fortsätt att hoppa, men använd olika hoppstilar (stående, från huk och på en fot) på de olika ytorna.
  7. Mät längden på varje hopp med olika hoppstilar och post i arbetsbladet.

Vad ska man fråga

  • Hur långt tror du att du kan hoppa?
  • Vilken hoppstil tror du fungerar bäst? Varför?
  • Hur jämfördes dina uppskattningar med dina faktiska resultat?

Vad händer härnäst?

  • Prova den här aktiviteten med någon som är längre eller kortare än du. Hur tror du att dina resultat kommer att jämföras med deras?

Arbetsbladet hittar du här: Hoppa som en groda (PDF,  211kB)

Tack till Children’s Museum Houston för idén.

Torn utmaning

Översikt

Tänk dig att du ingår i ett team av ingenjörer som har fått utmaningen att bygga det högsta torn du kan bygga med hjälp av 20 sugrör, 20 piprensare och tejp.

Du behöver inte använda alla material, men ditt torn måste klara av vikten av en golfboll i två minuter. Golfbollen måste stöttas nära toppen av tornet.

Instruktioner

Enklare

  1. Planera: Fundera på olika sätt du kan använda ditt material och sätta ihop dem för att bygga det högsta tornet. Du kan använda alternativa material.
  2. Design: Rita din plan för tornet på ett tomt papper.
  3. Konstruktionsfas: Bygg ditt torn och se hur länge det tar innan det faller.

Dokumentera dina observationer.

Material

Alternativt material för enklare variant:

  • 5-10 muggar
  • Modellera
  • Tejp eller lim
  • 2 pappersarks

(Eller annat material du har tillgängligt som kan staplas)

Avancerad

  1. Planera: Fundera på olika sätt du kan böja eller förändra formen på sugrören eller piprensarna. Du kan klippa dem och du kan använda tejp för att foga ihop dem.
  2. Design: Rita din plan för tornet på ett tomt papper.
  3. Konstruktionsfas: Bygg ditt torn och se om det är starkt nog för att hålla golfbollen uppe. Se hur länge det håller bollen uppe utan att falla.

Dokumentera dina observationer.

Material för avancerad variant:

  • 20 sugrör
  • 20 piprensare
  • 1 tejp
  • 1 sax
  • 1 golfboll
  • 2 pappersark

(Du kan ersätta golfbollen med något liknande, som exempelvis en apelsin)

 

Tack för idén till Project Exploration

Gör din egen luftkanon

Luftkanon

VAD ÄR EN LUFTKANON?

I allmänhet kan du inte se en luftvirvel om det inte finns en hel del partiklar i luften, t.ex. rök. Du kan dock se effekterna av den genom att göra den här roliga luftkanonen! En luftkanon släpper ut munkformade luftvirvlar – liknande rökringar men större, starkare och osynliga. Virvlarna kan rufsa håret, störa papper eller blåsa ut ljus efter att ha färdats en kort sträcka.

DU BEHÖVER:

  • Plastflaska
  • Ballong
  • Färg eller klistermärken (valfritt)

SÅ HÄR GÖR DU

STEG 1: Först klipper du av ändarna på flaskan och ballongen.

var du klipper flaskanvar du klipper ballongen

STEG 2: Dekorera flaskan om du vill! Detta steg kan göras före eller efter nästa steg beroende på vad du vill göra med den.

STEG 3: Sedan ska du sträcka ut ballongen över flaskans ände.

delarna ihopsatta

Klart! Du har gjort en superenkel fantastisk luftvirvelkanon för att blåsa ut luft.

HUR DU ANVÄNDER DIN LUFTKANON

Genom att använda flaskans ände med ballongen, för att i huvudsak suga tillbaka luft, kan du sedan sikta och skjuta ut luften framifrån flaskan. Du kan till och med slå omkull dominobrickor med denna luftkraft! Fantastiskt! Det är bara att sträcka ut ballongens ände och släppa loss den.

Vad kan du slå omkull med din egen luftvirvelkanon? Du kan prova att göra måltavlor av papper, sätta upp toapappersrullar, muggar och mycket mer!

HUR FUNGERAR EN LUFTKANON?

Den här luftvirvelkanonen må vara superenkel att göra, men den innehåller också en del bra vetenskap att lära sig! Om du verkligen vill hålla barnen engagerade i vetenskap, gör det roligt och praktiskt!

Som tidigare nämnts kan vi inte se luft, men vi kan se effekterna av luft som rör sig genom träd, strandbollen som blåser över gräsmattan och till och med den tomma soptunnan när den blåser ut från uppfarten och nerför gatan. Man kan också känna luft när det blåser! Luft består av molekyler (syre, kväve och koldioxid) och även om du inte kan se dem när det blåser kan du känna dem!

Varför rör sig luften? I allmänhet beror det på lufttrycket som orsakas av temperaturförändringar och rör sig från högt tryck till lågt tryck. Det är då vi ser stormar dyka upp, men vi kan också se det på en vanlig dag också med en svag bris.

Även om temperaturen är en stor del av tryckförändringen kan du också själv åstadkomma tryckförändringen med det här häftiga luftkanonprojektet! Luftkanonen skapar en luftstöt som skjuter ut ur hålet.  Även om du inte kan se det bildar luften faktiskt en munkform. Skillnaden i lufttryck från den snabbt rörliga luften genom öppningen skapar den snurrande virveln som är tillräckligt stabil för att färdas genom luften och slå omkull en domino!

Mjölkraket

Det här behöver du: ett tomt mjölkpaket, sax, färgpennor, hobbylim, garn i olika färger. En grillpinne, ett sugrör och eventuellt några klädnypor.

  1. Drick upp och diska ur ett mjölkpaket.
  2. Ladda ner mallen (PDF, 82kB) och klipp ut. I mallen finns en i färg och en som du kan färglägga själv. För att göra raketen stadig, klipp ut en bit av mjölkpaketet som är lika stor som mallen.
  3. Klistra fast raketen på mjölkpaketsbiten och låt torka.
  4. Klipp till några fransar av eldfärgad garn.
  5. Kapa en grillpinne till cirka 11 cm. Grillpinnarna är mjuka och går bra att kapa med en stor sax.
  6. Vik raketen på hälften och sätt hobbylim på insidan.
  7. Lägg på grillpinnen hela vägen upp till viket. Lägg sedan på fransarna i nederkanten.

8. Tryck ihop raketen, lägg den i press under något tungt eller håll ihop den med klädnypor tills limmet torkat.
9.När klistret har torkat, tryck mer pinnen i ett sugrör. Ta ett djupt andetag…

… och blås HÅRT och kort! Ladda om och skjut iväg igen!

Tack ARLA för tipset!