Fallskärmsutmaning

Översikt

Lär dig om luftmotstånd samtidigt som du tillverkar en fantastisk fallskärm! Designa en som kan falla långsamt till marken innan du sätter den i luften, testa och gör ändringar under tiden. Förhoppningsvis kommer din fallskärm att sjunka långsamt ner till marken och ge din vikt en behaglig landning. När du släpper fallskärmen drar vikten ner strängarna och öppnar upp en stor yta av material som använder luftmotståndet för att sakta ner. Ju större yta, desto större luftmotstånd och desto långsammare faller fallskärmen.

Genom att skära ett litet hål i mitten av fallskärmen kan luften sakta passera genom den i stället för att strömma ut över ena sidan.
bör hjälpa fallskärmen att falla rakare.

Material som behövs:

  • En plastpåse eller ett lätt material
  • Sax
  • Snöre
  • Ett litet föremål som fungerar som vikt, en liten actionfigur är perfekt.

Instruktioner

  1. Skär ut en stor kvadrat ur plastpåsen eller materialet.
  2. Klipp av kanterna så att det ser ut som en oktagon (en åttasidig form).
  3. Klipp ett litet hål nära kanten på varje sida.
  4. Fäst 8 stycken snören av samma längd i varje hål.
  5. Knyt snörbitarna till det föremål som du använder som vikt.
  6. Använd en stol eller hitta en hög plats för att släppa fallskärmen och testa hur bra den fungerade,

Kom ihåg att du vill att den ska falla så långsamt som möjligt.

Ytterligare resurser

Tänk på det! Fungerar större fallskärmar bättre? Hur skulle du ändra konstruktionen för att kunna bära en tyngre eller lättare vikt?

  1. Hur fungerar en fallskärm? https://tinyurl.com/we6r5nj
  2. Fallskärmar och vetenskapen om luftmotstånd: https://tinyurl.com/yakmqzkn

Tipset är hämtat från www.projectexploration.org

Parachute Challenge

Supplies Required:

  • A plastic bag or light material
  • Scissors
  • String
  • A small object to act as the weight, a little action figure would be perfect

Overview

Learn about air resistance while making an awesome parachute! Design one that can fall slowly to the ground before putting it to the
test, making modifications as you go. Hopefully your parachute will descend slowly to the ground, giving your weight a comfortable
landing. When you release the parachute, the weight pulls down on the strings and opens up a large surface area of material that
uses air resistance to slow it down. The larger the surface area, the more air resistance, and the slower the parachute will drop.

Cutting a small hole in the middle of the parachute will allow air to slowly pass through it rather than spilling out over one side, this
should help the parachute fall straighter.

Instructions

  1. 1. Cut out a large square from your plastic bag or material.
  2. Trim the edges so it looks like an octagon (an eight sided shape).
  3. Cut a small hole near the edge of each side.
  4. Attach 8 pieces of string of the same length to each of the holes.
  5. Tie the pieces of string to the object you are using as a weight.
  6. Use a chair or find a high spot to drop your parachute and test how well it worked, remember that you want it to drop as slow as possible.

Additional Resources

Think About It! Do bigger parachutes work better? How would you modify the design to carry a heavier or lighter weight?

  1. How does a parachute work? https://tinyurl.com/we6r5nj
  2. Parachutes and the science of air resistance: https://tinyurl.com/yakmqzkn

This experiment is found at www.projectexploration.org

Ecosystem

Do like this:

  1. Clean the two plastic bottles properly.
  2. Cut bottle No. 1 in half and put the top of the bottle away. It can be used for something else.
  3. Pour clean sand into the bottom of the bottle and pour about 2 cm of water on top.
  4. Cut about 3 cm off the bottom of bottle 2.
  5. Take the upper part of the bottle and put it in the first bottle.
  6. Pull a cotton string through it so that the string extends into the water.
  7. Put in some soil and plant a plant or sow some seeds.
  8. Take the bottom of the second bottle and turn upside down to put a lid on the ecosystem.
  9. Study how the plants grow in the artificial ecosystem.

I give a thanks to lekolar.fi for the idea.

Ekosystem

Gör så här:

  1. Rengör de två plastflaskorna ordentligt.
  2. Skär flaskan nr 1 på mitten och lägg bort flaskans topp. Den kan användas till något annat.
  3. Häll ren sand i botten av flaskan och häll ca 2 cm vatten ovanpå.
  4. Skär bort ca 3 cm av botten på flaska
  5. Ta den övre delen av flaskan och lägg den i den första flaskan.
  6. Dra ett bomullssnöre genom den så att snöret sträcker sig ut i vattnet.
  7. Lägg i lite jord och plantera en planta eller så några frön.
  8. Ta botten på den andra flaskan och vänd upp och ner för att sätta ett lock på ekosystemet.
  9. Studera hur växterna växer i det konstgjorda ekosystemet.

Ett tack till lekolar för tipset.

Birds – Mmm yum!

Tip from www.hospedagogen.com

What you need:

  • Birds
  • Paper plate, or paper and pencil to draw a plate
  • Learning plate (not necessary) or flora

Goal

Children will practice presenting and arguing their case. Find out which berries, fruits and seeds are found in a local area.

Preparation

Divide the children into groups of three or four.

How to do it

  1. Draw a plate or use a ready-made plate.
  2. Fill it with the birds’ favourite dish.
    Give the children 15 minutes to find berries, seeds, fruit and more in the forest. Bring the finds to their plate and post what the group has found.
  3. Name the dish and argue why the birds like that particular dish.

Bonus is if the children can also figure out what is in front of them on their plate. Here it might be useful to have a learning board, or a flora with them, where the children can find out what plants they have found.

Continuation

In the classroom, the children can then stick the dish on the plate and describe their dish and why it is the birds’ absolute favourite.

Fåglar – Mmm mums!

Tips från www.hospedagogen.com

Det här behöver du:

  • Fåglar
  • Papptallrik, alt papper och penna för att rita en tallrik
  • Lärplatta (ej nödvändig) eller flora

Mål

Barnen får träna presentera och argumentera för sin sak. Ta reda på vilka bär, frukt och frön som finns i ett närområde.

Förberedelser

Dela upp barnen om tre eller fyra.

Hur gör du?

  1. Rita upp en tallrik eller använd en färdig tallrik.
  2. Fyll den med fåglarnas favoriträtt.
    Barnen får 15 minuter på sig att leta upp bär, frön, frukt med mera i skogen. Ta med de upphittade fynden till sin tallrik och lägg upp vad gruppen har hittat.
  3. Ge rätten ett namn och argumentera varför fåglarna gillar just den rätten.

Bonus är om barnen också kan ta reda på vad de har framför sig på tallriken. Här kan det vara bra att ha en lärplatta, eller en flora med, där barnen kan ta reda på vilka växter de har hittat.

Fortsättning

I klassrummet kan barnen sedan klistra fast maträtten på tallriken och beskriva sin maträtt samt varför den är fåglarnas absoluta favorit.

Bygg en pappersraket

Material

  • Två pappersbitar
  • En sax
  • Blyertspenna.
  • Sugrör
  • Linjal
  • Ett fritt utrymme där du kan skjuta upp dina ”raketer”, t.ex. ett stort rum, en hall eller ett vindstilla område utomhus.
  • Måttband (valfritt)

Förfarande

  1. Skär ett papper i fyra mindre rektanglar genom att dela det på mitten på längden och bredden. På så sätt kan du göra fyra raketer.
  2. Linda en av pappersrektanglarna runt en blyertspenna så att den bildar en cylinder, med papperets långa kant längs med blyertspennans längd.
  3. Tejpa ihop cylindern så att den inte rullar upp sig (men tejpa inte fast den på pennan).
  4. Skjut av cylindern från pennan. Kläm ihop den ena änden av cylindern och förslut den med tejp. (Detta är den ”främre” änden av din raket.) Låt den andra änden vara öppen. Detta kommer att bli din första raket, utan fenor.
  5. Med gott om utrymme framför dig – och utan hinder, till exempel möbler eller människor – gör dig redo att skjuta upp din första raket! Skjut den över ett sugrör. Rikta sugröret framåt och blås sedan in i det så hårt du kan. Titta på din raket när den flyger.
  6. Hur långt går den? Flyger den rakt eller tumlar den i luften?
  7. Starta din raket några gånger till för att se om den flyger på samma sätt. Om du vill registrera raketens flygavstånd, se till att starta den från samma plats varje gång och mät till landningsplatsen med ett måttband.
  8. Gör ytterligare en pappersraket enligt de föregående stegen. Kom ihåg att klämma ihop den ena änden och tejpa ihop den.
    Bild på pappersraket.
  9. Till den här raketen ska du dock göra fenor. Klipp ut två rätvinkliga trianglar (med en 90-graders vinkel i den ena hörnan) från den andra pappersbiten. Trianglarnas långsidor ska vara ungefär åtta centimeter långa. Du viker varje triangel för att göra två fenor, så att du får fyra fenor totalt.
  10. Rita en linje som delar den ena triangeln på mitten (från 90-gradershörnet till mitten av triangelns långsida).
  11. Rita två linjer parallellt med den första linjen (en på varje sida), ungefär fem millimeter från den.
  12. Vik nu triangeln uppåt längs dessa två linjer. Resultatet ska bli två trianglar som sticker upp i luften (fenorna), med en platt del som förbinder dem emellan.
  13. Tejpa fast den platta delen på sidan av din cylinder, mot den öppna änden (basen, eller botten, på din raket).
  14. Upprepa dessa steg för den andra triangeln, och tejpa fast den på din cylinder på motsatt sida av den första triangeln. Resultatet ska bli fyra fenor som bildar ett ”+” när du tittar på raketen från båda ändarna. Om det är nödvändigt, böj fenorna så att de har 90 graders avstånd till varandra.
  15. Skjut den nya raketen på sugröret och skjut upp den.
  16. Hur långt går den här raketen? Hur är dess flygning jämfört med din första fenlösa raket? Går den längre? Tumlar den eller flyger den rakt? Tror du att fenorna bidrar till att göra din raket mer stabil?
  17. Starta den några gånger till. Om du mäter flygsträckan för varje raket, använd ett måttband och anteckna hur långt den flög.

Vad hände?

Du borde ha sett att din fenlösa raket flög rakt till en början, men att den snabbt kom i en spiralrörelse och tappade kontrollen. Den kan ha tumlat genom luften och fladdrat till marken, nästan som ett löv som faller från ett träd. Detta beror på att raketen inte hade några fenor som höll den stabil. Om den började svänga bara en liten bit skulle den börja svänga ännu snabbare tills den helt förlorade kontrollen. Däremot borde din andra raket med fenor ha flugit rakt och färdats mycket längre som ett resultat av detta. Detta beror på att fenorna hjälper till att hålla raketen stabil, eller riktad i samma riktning. Om raketen vänder lite grann hjälper fenorna till att vända den tillbaka i den ursprungliga riktningen.

Build a Paper Rocket

Materials

  • Two pieces of paperBuilding paper rockets.
  • Scissors
  • Pencil
  • Drinking straw
  • Ruler
  • Clear space in which to launch your ”rockets,” such as a large room, hallway or outdoor area with no wind
  • Measuring tape (optional)

Procedure

  1. Cut one piece of paper into four smaller rectangles, by cutting it in half lengthwise and widthwise. This will allow you to make four rockets.
  2. Wrap one of the paper rectangles around a pencil to form a cylinder, with the long edge of the paper along the length of the pencil.
  3. Tape the cylinder closed so it does not unravel (but do not tape it to the pencil).
  4. Slide the cylinder off the pencil. Pinch one end of the cylinder shut and seal it with tape. (This is the ”front” end of your rocket.) Leave the other end open. This will be your first rocket, with no fins.
  5. With plenty of room in front of you—and no obstructions, such as furniture or people—prepare to launch your first rocket! Slide it over a drinking straw. Aim the straw forward, then blow into it as hard as you can. Watch your rocket as it flies.
    How far does it go? Does it fly straight or does it tumble in midair?
  6. Launch your rocket a few more times to see if it flies the same way. If you would like to record your rocket flight distances, be sure to launch it from the same place each time, and measure to the landing spot with a tape measure.
  7. Make another paper rocket following the previous steps. Remember to pinch one end and tape it shut.
  8. For this rocket, however, you will make fins. Cut out two right triangles (with a 90-degree angle in one corner) from the other piece of paper. The long sides of the triangles should be about eight centimeters. You will fold each triangle to make two fins, so you will have four fins total.
    Paper rocket.
  9. Draw a line that splits one triangle in half (from the 90-degree corner to the middle of the long side of the triangle).
  10. Draw two lines parallel to the first line (one on each side), about five millimeters away from it.
  11. Now, fold the triangle up along these two lines. The result should be two triangles sticking up in the air (the fins), with a flat part connecting them in between.
  12. Tape the flat part to the side of your cylinder, toward the open end (the base, or bottom, of your rocket).
  13. Repeat these steps for the other triangle, and tape it to your cylinder on the opposite side of the first one. The result should be four fins that form a ”+” shape when you look at the rocket from either end. If necessary, bend the fins so they are spaced out 90 degrees apart from one another.
  14. Slide the new rocket onto the drinking straw and launch it.
    How far does this rocket go? How does its flight compare with your first finless rocket? Does it go farther? Does it tumble or does it fly straight? Do you think fins help the stability of your rocket?
  15. Launch it a few more times. If you are measuring the flight distance of each rocket, use a tape measure and record how far it flew.

What Happened?

You should have seen that your finless rocket flew straight at first but quickly spiraled out of control. It might have tumbled through the air and fluttered to the ground, almost like a leaf falling from a tree. This is because the rocket did not have fins to keep it stable. If it started turning just a little bit, then it would start turning even more rapidly until it completely lost control. In contrast, your second rocket that had fins should have flown straight, and traveled much farther as a result. This is because the fins help keep the rocket stable, or pointed in the same direction. If the rocket turns a little bit, the fins help turn it back in the original direction.