Galaxy Magic Milk

Supplies

  • Shallow dish (we used a pie plate)
  • Small dish (just big enough to hold some dish soap)
  • Q-Tip cotton swab
  • Milk (try a variety of different fat content milks and creams to see how it affects your reactions)
  • Dish Soap (we used Dawn)
  • Food Colouring (ensure it is liquid food colouring, gel food coloring will not work)

Directions

Fill your dish with milk until is it about 1 – 2 cm deep.

Add some dish soap to your small dish and set it to the side.

Next add drops of food colouring around the plate. We used a variety of blues, a purple and a drop of yellow (to make stars and make it more like pictures of nebulas we have seen). We find it best to do this in random circle like patterns around the centre point.

Now it’s time for the big reaction!

Dip the Q-Tip into the dish soap. Then place it into the centre of the dish and watch the reaction! You can remove the Q-Tip after a couple of seconds so you can enjoy the explosions of colours.

As the reaction continues you can add more dish soap or more food colouring.

Galaxy Magic Milk

Which Kinds of Milk are Perfect?

As we learned with our previous Magic Milk study, the answer to this question depends on the reaction you want to see. At first we tried this experiment with 2% milk, but the reaction was very rapid and didn’t last as long. So the second time we added a bit of cream. We didn’t want to only use cream because we knew that would result in fractals and we wouldn’t get the spread of colour we were looking for to create our Galaxy inspired look. Adding just a bit of cream was perfect and gave us some really cool colour spreads. Whole milk gave a similar result.

Ready to learn more about the science behind Magic Milk and how the fat content of milk affects the results? Let’s dig in!

The Science Behind a Milk and Dish Soap Reaction

With our Magic Milk Science Fair Project we were able to study the effect fat content had on the movement of colour when a drop of dish soap is added. Keep in mind that milk is made up of minerals, proteins and fats. Proteins and fats are susceptible to changes, as we see in this reaction.

Surface Tension

Liquids have something called surface tension. Water, milk, and cream are made up of molecules that have positive and negative charges on their surface. Just like magnets these charges allow them to attract and repel other molecules. When milk or cream is by itself, it’s molecules are surrounded by the same type of molecules, creating a nicely balanced push and pull. The exception is the top which is exposed to air which pushes down on the liquid, creating surface tension on the top of the liquid. This surface tension of the milk affects our explosion of color.

Surfactant

There is a substance that affects a liquid’s surface tension, it’s called a surfactant. Dish soap is mostly comprised of surfactants. It has a hydrophilic part that is attracted to the water and a hydrophobic part that wants to interact with the fat molecules and repels water.

The pushing and pulling of the fat and water molecules in the milk separates them, resulting in a decrease of the surface tension.

Impact of Ratios

We see a big difference between our various fat content milks due to the different ratios of fat to water in the liquids. The higher fat content milk is much thicker. We can see this before adding the dish soap if we just look at the food colouring drops. The food colouring spreads significantly in 2%, spreads a little in 18% and doesn’t move at all in 33%.

This means, in our 33% cream, there is less water for the hydrophilic part to attract, and way too much fat for the hydrophobic part to ineract with. The surfactant (dish soap), has very limited effect on the surface tension, which remains quite a viscous, stable liquid. This leads to the fractal style, very limited spread of colour we see in the high fat milk.

In the 2% milk we have lots of water and some fat, allowing the surface tension to be affected easily. This results in a dramatic dance of color but it doesn’t last as long.

 

The idea is taken from SteamPoweredFamily.com

Some LEGO-building ideas

LEGO SYMMETRY

Try this fun symmetry challenge! Set up half a baseplate with an abstract image and have your kiddo complete it using the principles of symmetry!

LEGO Parachute

The mini-figs get to have all the fun! The challenge is to build a parachute from simple supplies that will see them safely land. Can you do it?

LEGO Balloon Car

Build a balloon powered car that really goes! Race your car and see how far to can travel.

LEGO Catapult

Build an awesome LEGO catapult using basic bricks for an easy STEM and physics activity. This fun homemade catapult just about everyone will want to make!

LEGO Marble Maze

Build your own LEGO marble maze. Can you make it all the way through the maze from one end to the other?

All ideas taken from the LittleBinsForLittleHands.com blog.

 

 

Three Little Pigs

For our STEM project, we wanted to try building all three types of the Three Little Pigs’ houses. Their goal was to make the house that can stand up best to mom’s “wolf blowing”. But you could also pull out a hair dryer for blowing.

Supplies needed for this project:

Straws, popsicle sticks, wooden blocks, string, masking tape, and rubber bands.

STRAW HOUSES:

For the first part of our Three Little Pigs STEM project, we made the straw houses. We made straw houses out of plastic straws. You could do this with paper or plastic straws~ whichever you prefer.  I started by just giving them string and rubber bands and straws. My son had no trouble with this, but my girls begged for tape, so we added that into the supplies.

STICK HOUSES:

Next, we made our stick houses.  These we did out of popsicle sticks and masking tape. IF you want to make it harder on them, make them collect sticks and tie them together with twine.

BRICK HOUSES:

We did our brick houses out of wooden blocks. Another fun option would be LEGO Bricks. This was the quickest and the easiest house to build. We thought that was funny because in the story of the Three Little Pigs, it’s the opposite.

The Results of Our Three Little Pigs STEM Project

The straw houses were the easiest to blow.  The stick houses were second. Some of them did not even move!  The bricks houses were not moveable, just like the story. However, the length of time building them was the opposite. It took my kids a lot longer to build the straw houses than any of the others.

Three Little Pigs STEM Project for Kids – Teach Beside Me

Painting with sound

Thread different bells on pipe cleaners. Feel free to use different numbers of bells on the pipe cleaners. Bend the pipe cleaners around the brushes. It is also possible to glue the pipe cleaners to the brushes.

Ask the children to paint different things at different speeds. This will bring out the sounds. What does it sound like if you paint a circle versus a square. Ask the children to paint as it sounds and let them discover what is happening. The older children can paint blind. Attach different numbers of bells to the brushes – from just one to many.

The idea is taken from Lekolar

See, think, wonder

A THINKING ROUTINE FROM PROJECT ZERO, HARVARD GRADUATE SCHOOL OF EDUCATION

Purpose: What kind of thinking does this routine encourage?

This routine encourages students to make careful observations and thoughtful interpretations. It helps stimulate curiosity and sets the stage for inquiry.

Application: When and where can I use it?

Use this routine when you want students to think carefully about why something looks the way it does or is the way it is. Use the routine with a relevant object (such as an artwork, image, artifact, chart, video, etc.) at the beginning of a new unit to motivate student interest, or try it with an object that connects to a topic during the unit of study. Consider using the routine with an interesting object near the end of a unit to encourage students to further apply their knowledge and ideas.

Launch: What are some tips for starting and using this routine?

Once you present the object to your students, give them time to observe it. It may be useful to explain that they are first going to describe exactly what they see, not what they think they see. In the second step when students describe what they think about what they’re seeing, you could ask them follow-up questions like, “What else is going on here?” or “What do you see that makes you say that?” These questions help move students away from giving unsupported opinions encouraging them instead to use evidence to explain their thoughts. In the third step, help students articulate what they are wondering by asking them what questions remain for them.

The routine generally works well in a group discussion. You may want to document the students’ responses and post them in a place where all students can see them to encourage future consideration. When doing this as a group, you may want to ask students to try the routine quietly on their own first (perhaps documenting their own thinking in writing) before discussing in a group.

Poster with the three questions: See think wonder (PDF, 280 kb)

This thinking routine was developed as part of the Visible Thinking
project at Project Zero, Harvard Graduate School of Education.
Explore more Thinking Routines at pz.harvard.edu/thinking-routines

Logo for Project Zero

 

Clothespin Airplane Valentines

Clothespin airplane with heart shaped message attached.

Use the clothespin to hold onto a little paper heart with a message.

Supplies Needed

  • Clothespins – the type the open with a spring
  • Popsicle sticks – 2 per plane
  • Mini popsicle sticks – 2 per plate
  • Corrugated cardboard
  • Glue – we used hot glue
  • Acrylic paint and brushes
  • Scissors
  • Construction paper
  • (Magnet)

Step 1: Assemble your pieces.

For each plane, you’ll need two popsicle sticks, one clothespin, and one mini popsicle stick.

Cut cardboard segments for the struts between the wings of the bi-plane. Make the cardboards segments just tall enough that the top wing will sit ABOVE the clothespin and not attached to it. That will allow you to still operate the clothespin to insert the paper heart.

Cut a segment of a popsicle stick to be a tail. NOTE – the photo shows the popsicle stick cut straight across, but if you cut the tail at an angle, it looks better.

Required part to build the airplane.

Step 2: Assemble the plane with hot glue.

We found that it was easier to glue the plane together first before painting. That way, you can cover any sloppy glue areas with paint.

*Don’t glue the popsicle stick wing to the top of the clothespin, or the clothespin won’t open. Glue it to the cardboard struts.

Assembled airplane.

Step 3: Paint your plane!

We used acrylic paint, and I really think that’s the best option. Just make sure to cover up clothes, etc. when working with acrylic because it won’t wash out.

Step 4: Cut out a heart from construction paper and write a cheerful message!

Also, another idea – it might be fun to add a magnet to the belly of the plane and put it on the refrigerator!

 

Thanks to FrugalFun4Boys for the idea!

Tin Can Phone

Tin can telephone.
By Chris Potter – flickr, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=40558179

Material

  • 2 paper cups
  • Pin or pin
  • about 1.5m of string
  • 2 paper clips

Method

Use a pin to make a hole in the bottom of each mug.

Pull the string through the holes through both cups. Make sure the bottoms of the cups are facing each other.

Tie a paper clip at each end of the string

Pull the string so hard with your friend that the paper clips hit the bottom of the mugs.

Take turns talking into the mug and listening by placing the mug over your ear.

Why

The sound travels through the air in waves. When you speak, the mug picks up sound waves, after which they move the string along with your friend’s mug.

This can also be done when several mugs are connected by string. Make another landline phone out of two mugs and tie the phones together to get a landline phone for four.

 

Freezing Bubbles Experiment

Supplies

  • Bowl and spoon
  • 200 mL warm water
  • 5 Tbsp corn syrup (for thickness)
  • Two tablespoons sugar (for crystallization)
  • 5 Tbsp dish soap (for bubble formation)
  • One straw
  • One water or pop bottle
  • modeling clay or playdough
  • A day that is cold with no wind

How to Make Frozen Bubbles

For best bubble crystallization it needs to be at least -10C outside. We did this at -35C to -45C. The most important part is that there needs to be no wind.

Making the Special Frozen Bubble Juice Recipe

  • Start by making the bubble juice in a container with a lid. Add the warm water first. We used tap water as warm as it would come out of the tap. Then stir in the corn syrup until the water is clear.
  • Next add the sugar and stir until completely dissolved.
  • Finally, add the dish soap and stir until combined. Do not get too enthusiastic about stirring at this stage or you will create a lot of bubbles. Stir enough to just combine the soap with the solution.
  • This is why we leave the dish soap to last. The sugar and corn syrup require quite a bit of stirring to dissolve. We do not want to create bubbles in our solution now, we want to save them for later!
  • Place a lid on the container and set it in the freezer or outside for about 30 minutes to chill the mixture. We do not want it to freeze! Just chill.

Making the Bubble Blaster

  • While the juice is chilling, we need to make a special bubble blaster! For this you will need a water or pop bottle (500mL is a suitable size). Empty and dry the bottle.
  • Take the cap and drill a hole in the cap that is just big enough to fit your straw. This step should be done only by a competent adult!
  • Place the straw through the hole in the cap and secure it using modeling clay to create an airtight seal.
  • If you do not have modeling clay (we prefer it because it stays pliable even in the cold and maintained the seal), you can try play dough or even a glue gun. The goal is to secure the straw and create a seal.

Freezing Bubbles

Now it is time to bundle up and head outside. Find a nice place, preferably with some fresh snow.

Using the bubble blaster, dip the end of the straw into the bubble juice, then squeeze the bottle to “blow” and create your bubble. Set the bubble on the snow and watch it crystallize. You can also drop the bubbles and watch them freeze but when they land, they are more likely to break.

Tricks to Make the Bubbles Freeze Without Breaking

Make sure your bubble juice is at least one inch deep. This allows the inside of the straw to be coated nice and high inside allowing you to create some good-sized bubbles.

The trick to making the bubbles freeze without breaking is to get them off the straw before they start to crystallize and freeze. So, blow the bubble, then release the bottle so the bubble detaches before it starts to freeze. The time you have will vary based on the temperature.

Try and set the bubble down gently. It is fun to watch them fall, but the force of the air can cause the frozen bubble to break and landing on the ground usually breaks the bubbles if falling does not do it. For best results blow the bubble onto some snow.

Make sure there is no breeze at all. This is critical. Find a sheltered spot and make sure the kids are not blowing or creating any breeze. This will cause the bubbles to shatter.

Have a nice soft-landing spot for the bubbles. We found a railing with a fresh layer of snow was perfect!

Building Frozen Bubble Towers

If you do everything right you can turn this into a fun challenge to see who can build the biggest frozen bubble tower, or who can make the longest line of bubbles, or ten bubbles in a row. Lots of opportunities for some fun, frozen competition!

The Science Behind Freezing Bubbles

After years of failures trying to get bubbles to freeze, I ended up learning a LOT about how to make this happen successfully.

First, temperature is your friend and your enemy. You need to keep everything cold and that is why we needed to create our bubble blaster. The air in our lungs is too warm and the difference in temperature between the air outside and the air we blow out of our lungs is too great and leads to breaking. Remember warm air expands! So, when you blow into the bubble juice, what is that warm air going to do? Expand and break your bubble!

That is also why we want to chill our bubble juice, to bring it closer to the outside temperature.

You want nice strong bubbles to really make this experiment work. To freeze up nice and solid (some of our bubbles are still there days later!), you need a thick bubble juice. The corn syrup provides that nice thickness we need in our juice to make a strong bubble. After making our bubbles if we gently knocked them free, they would roll across the ground like marbles!

Those gorgeous crystal formations you see on the bubbles is the process of crystallization. This is caused by the freezing process but is helped along by the sugar. This gives us some gorgeous frozen bubbles.

Of course, the final ingredient is dish soap which helps create the bubbles!

 

Idea taken from STEAMpoweredFamily

If you want tips how to document it all look at: ”How to Shoot Frozen Soap Bubbles”