Vad flyter var?

Det har funnits några experiment med att flyta här. Jag ger er ett till. Sedan har jag lite annat i rockärmen.

Flyter allting i alla slags vätskor, eller är det så att vissa saker kan flyta i vatten, men inte i andra vätskor?

För att prova det kan ni göra följande experiment:

Mät upp så det är lika mängder vatten, olja och sirap, och häll ner dem i den stora burken, en vätska i taget. För effektens skull, kan det ha en poäng att börja med vatten, sedan olja och sist sirapen. Vätskorna kommer att skikta sig.

Nu är det dags att välja ett föremål och ställa en hypotes: ”Kommer det valda föremålet att flyta i oljan, i vattnet eller i sirapen?”

MATERIAL

  • En stor glasburk
  • Matolja
  • Vatten
  • Sirap
  • Diverse småsaker: vindruva, skruv, gummisnodd, suddgummi, en bit stearin, gem i plast och i metall, stora paljetter, kork, mynt, häftstift, pärla, spik, magnet…

Hur mycket kan en magnet lyfta?

Ett experiment som innehåller både naturvetenskap och praktisk matematik. Alex räknade till 137 spikar som satt fast på magneten och hade säkert kunnat räkna längre om inte spikarna i lådan hade tagit slut. Kan alla magneter hålla lika många saker, eller skiljer det sig, och i så fall varför? Något att undersöka!

Om ni vill kan ni börja med att:

Göra en egen magnet

Tag en magnet och stryk en nål flera gånger (cirka 20 gånger behövs) efter änden på magneten, men hela tiden åt samma håll, inte fram och tillbaka. Prova att plocka upp något av metall med stickan/nålen. Fungerar det? Då har du gjort en magnet som vänder sig så den har nordändan mot den magnetiska sydpolen och sydändan mot den magnetiska nordpolen.

Genom att dra med magneten mot nålen vrider sig många av järnatomerna i nålen så deras magnetfält börjar samverka. Detta gör att nålen börjar fungera som en magnet.

Hur stark är din magnet?

  • Vad kan den dra?
  • Hur mycket kan den lyfta?
  • Hur många tågvagnar kan magneten hålla samtidigt i en lång kedja, innan kedjan bryts?
  • Kan den få metallföremål att hoppa upp från bordet?
  • Hur högt i så fall?

Bygg en båt till

Det här är ett experiment som visar att formen på ett föremål är viktig för att kunna få föremålet att flyta i vatten, men det är också ett experiment som kan vara svårt för barnen att göra själva, eftersom det är flera moment att ta hänsyn till och många instruktioner för att få en båt som flyter. När det väl lyckas är det väldigt roligt!

Blanda alla torra ingredienser i en bunke, slå över det kokande vattnet. Tillsätt oljan och karamellfärgen, och arbeta snabbt ihop ingredienserna till en deg. Låt svalna något innan användning!

Ge barnen varsin bit lera och låt dem forma en båt som de vill. Prova den i vattnet och se om den flyter. Med största säkerhet gör den inte det, eftersom formen har så stor betydelse för lerans flytegenskaper (leran har en högre densitet än vatten, och sjunker i vanliga fall). För att leran ska kunna flyta måste den formas som en kaffekopp eller ett glas, alltså som ett kärl med höga kanter.

En vidareutveckling är att låta barnen prova på att bygga båtar av flera olika sorters lera. Finns det någon lera som flyter, oavsett hur man formar den, eller är formen på båten lika avgörande för alla slags leror?

Om du vill ha finns här också ett recept på play-doh-lera

  • 5 dl mjöl
  • 5 dl kokande vatten
  • 2 dl salt
  • 2 msk citronsyra/ alun (kan uteslutas helt, då blir det trolldeg)
  • msk matolia (kan också uteslutas helt)
  • Karamellfärg

 

Bygg en båt

Kan en båt vara byggd av vad som helst? Och hur kommer det sig att båtar som är byggda av metall kan flyta, när metall egentligen sjunker?

Låt barnen snickra, klistra, skruva och bygga sin båt efter eget tycke och smak, och låt dem sedan prova båten i en lämplig balja eller bassäng för att se om den flyter. 0m den inte flyter får ni arbeta vidare med konstruktionen.

Ebba har bestämt sig för att bygga en båt med hjälp av en tavelram som hon hittat i verkstaden. På den tejpar hon ett papper och sedan är båten klar. Visst flyter Ebbas båt! Nog för att tejpen löses upp av vattnet ganska snabbt, men den rena konstruktionsglädjen är värd att ta till vara.

Friktion

Första experimentet

  • Pröva att snurra en slät gummiboll i en skål med vatten. Vad händer?
  • Pröva det samma med tennisbollen. Vad händer med den? Varför?

Andra experimentet:

  • Lägg två saker på en skärbräda i trä, exempelvis en knapp och ett suddgummi. Lutan brädan lite.
    Vad hände? Vilket föremål åker fortast? Varför?
    Pröva även med andra saker.
  • Gör om samma experiment med en metall, eller glasbricka.
    Vad händer? Varför?

Varmt, kallt eller mittemellan?

Lite vattenexperiment så här i ruksväderstider? Varför inte?

VattenskålFör det här experimentet behöver du tre skålar, stora nog att få ner en eller två händer i.

Häll varmt vatten i en, kallt i en annan och rumstempererat i den tredje.

Stoppa en hand i det varma vattnet och den andra i det kalla. Håll dem där för 30 sekunder.

Placera sedan båda händerna i det rumstempererade vattnet. Känner händerna samma sak?

Förklaring: Människans temperatursinne är känsligt för förändringar. När din hand exempelvis flyttas från kallt till varmt vatten signalerar kroppen att vattnet är väldigt varmt – även om det egentligen inte är det.

Experimentera: För att göra denna undersökning till ett experiment kan du försöka besvara någon av nedanstående frågor. Glöm inte att ställa en hypotes och att förklara resultatet.

  • Vilken är den kortaste tid måste du hålla händerna i det varma respektive kalla vattnet för att uppnå denna effekt?
  • Hur känns det om du håller händerna jättelänge i det varma respektive kalla vattnet, innan du doppar dem i det rumstempererade vattnet?
  • Hur snabbt kan du känna temperaturförändringen?
  • Vilken är den minsta temperaturskillnad du kan ha mellan vattnet i skålarna?
  • Fungerar det om du endast doppar ett finger i varje skål?

Varmluftsfarkost av tepåse

Det här är ett experiment som man måste vara mycket försiktig med, i och med att man handskas med öppen eld.

Välj en vanlig tepåse (ej triangelpåse). Klipp av tepåsen strax under tillslutningen och häller ut innehållet. Vik upp den tomma påsen så att man får en lång, smal, ihålig cylinder av pappret. Cylindern placeras stående på underlaget och man tänder på övre delen.

Det som händer är att elden sprider sig neråt och när den nått till nedre delen av ”farkosten” lyfter resterna av påsen p.g.a den stigande varmluften.

Förklaring är att vid förbränning värms den omgivande luften. Då temperaturen
ökar, utvidgas luften och får på så sätt lägre densitet. Den varma luften med lägre densitet stiger uppåt och ger då upphov till en luftström. Tepåspappret dras med i luftströmmen så snart vikten har minskat tillräckligt. Vikten minskar allt eftersom pappret förbränns.

Flyter eller sjunker?

Låt varje barn välja ut en eller flera saker att prova i vatten. Arbetsmetoden att ställa en hypotes är bra och lätt att använda här. Ge barnen varsitt papper med två baljor uppritade, och be dem rita vad de tror ska hända med den sak de valt ut, i den första baljan. Sedan, när de har provat och sett vad som verkligen händer, så får de rita vad som verkligen hände i den andra baljan.

MATERIAL

  • En behållare av något slag, helst genomskinlig, (en hink eller en diskbalja går alldeles utmärkt).
  • Saker att prova om de flyter eller sjunker, exempelvis: pennstump, stearinljus, mynt, flirtkula, pärla, äpple, knapp, apelsin, makaron, radergummi, morotsbit, paljett, sax, nyckelring, pappersbit, träknapp, träbit, gurka, skruv, spik, kork, cd-skiva, glasburk, gem. Bara fantasin sätter gränser så undersök lådor och skåp på avdelningen, titta i köket och i verkstaden/ateljén/snickarrummet och plocka ihop saker som ser intressanta ut.

Att låta barnen ställa en hypotes eller komma med en gissning om vad som ska hända med deras utvalda föremål är en bra metod för att få igång barnens tänkande och för att inte fastna i görandet. Det är väldigt roligt att släppa ner saker i vatten och bara se vad som händer, men i ett experiment handlar det också om att försöka väcka barnens förmåga till reflektion och tänkande kring det som händer. Vad tror du kommer att hända? Varför då? Hur kan vi gå vidare med det?

Flyter eller sjunker 2

Samma material som ovan. Gärna flera av varje sak!

Arbetsmetoden här är att utmana det barnen redan vet. Vad valde du förra gången, och vad hände då? Hur kan du få det att flyta om det sjönk, eller sjunka om det flöt?

Clara valde ett mynt, som hon visste skulle sjunka. Att radergummit flöt, det visste hon också efter förra gångens experiment. Efter en stunds funderande på hur hon skulle kunna få myntet att flyta, så provade hon att sätta fast sitt mynt vid radergummit med hjälp av gummisnoddar.

Dags att prova hur det går!

Ett radergummi var för litet för att få myntet att flyta bra, men när Clara tog två radergummin gick det bättre att få myntet att flyta.

Jet Aircraft

Experiment with air.

You will need: Balloons, thread, tape, straw, matchbox.

  1. Tie a long thread, with a piece of straw threaded, across the room.
  2. Blow up a balloon (do not tie) and tape it to the straw. Release the balloon. What happens?
  3. Now try loading the balloon by taping a matchbox under the balloon. What happens?

The experiment was created by Åsa Malmström at Österäng’s preschool, taken from lektion.se.