How long is an apple peel?

The purpose of this activity is to challenge the children in an problem-solving task where there are several different alternatives while also being able to work together, talk and cut with scissors or tear with their fingers. There is also a lot of mathematics, as well as conceptual ability.

How to Do It:

Get an apple and ask: How long is an apple peel?

  • Document the children’s hypotheses, which can be anything from minute to one meter. Some children draw their answer and others show with their hands.
  • Bring out a potato peeler and ask first if they know what it’s called and what you can use it for.
  • Carefully peel the apple around, making the apple peel much longer than the children first think.
  • Measure together how long the apple peel became but first ask what tools we should use to measure it. Relatively soon the children discover that the ruler is difficult to use so it often takes to hands, the cords and after a while we retrieve the tape measure.
  • Get scissors and A4 paper and challenge the children with the question of whether they think they can cut the paper longer than the apple peel.
  • Have the children try different solutions

Friction

First experiment

  • Try spinning a smooth rubber ball in a bowl of water. What happens?
  • Try the same with the tennis ball. What happens to it? Why?

Second experiment:

  • Place two things on a cutting board in wood, for example a button and a eraser. Tilt the board a little.
    What happened? Which object travels fastest? Why?
    Try other things too.
  • Repeat the same experiment with a metal or glass tray.
    What happens? Why?

Wam, Cold or in between?

A little water experiment like this in rainy weather times? Why not?
Vattenskål
For this experiment you will need three bowls, big enough to bring down one or two hands.

Pour hot water in one, cold in another and room-temperatured in the third.

Put one hand in the warm water and the other in the cold. Hold them there for 30 seconds.

Then place both hands in the room-temperatured water. Do your hands feel the same?

Explanation: Human temperature sensation is sensitive to change. For example, when your hand is moved from cold to warm water, the body signals that the water is very hot – even if it is not.

Experiment: To make this study an experiment, try answering any of the questions below. Don’t forget to set a hypothesis and explain the result.

  • What is the shortest time you have to keep your hands in the hot or cold water to achieve this effect?
  • How do you feel if you hold your hands for a long time in the warm and cold water, respectively, before immersing them in the room-temperature water?
  • How fast can you feel the temperature change?
  • What is the smallest temperature difference you can have between the water in the bowls?
  • Does it work if you dip one finger in each bowl only?

Hot air balloon with a teabag

This is an experiment that you have to be very careful with, as you deal with open fire.


Choose a regular tea bag (not a triangular bag). Cut off the tea bag just below the closure and pour the contents. Fold up the empty bag to get a long, narrow, hollow cylinder of paper. The cylinder is placed upright on the ground and the top is lit.

What happens is that the fire spreads downwards and when it reaches the lower part of the ”vehicle” the remains of the bag lift due to the rising hot air.

The explanation is that during combustion the surrounding air is heated. Then the temperature increases, expands the air and thus gets lower density. The lower-density hot air rises upward and then gives rise to an airflow. The tea bag paper is drawn into the air stream as soon as the weight has dropped sufficiently. The weight decreases as the paper is burned.

Geometrical SPUNK

This task trains to designate geometric shapes.

This exercise works just as well indoors as outdoors.

  1. Place all geometry patches in the center of the ring on a cloth (one of each).
  2. One child goes aside and meanwhile the other children secretly choose which geometric figure is SPUNK.
  3. When the group is done, the child will return.
  4. The child points with a stick in turn on the various figures in the middle. The whole class says aloud what it is for a figure, but when the child points to the figure chosen for SPUNK everyone says SPUNK.
  5. When SPUNKEN is found, you change who is allowed to step aside.

The task is found from the blog ”Räkna med mig

Float or sink?


MATERIAL

  • A container of some kind, preferably translucent, (a bucket or countertop works just fine).
  • Things to try if they float or sink, for example: pencil, candle, coin, ball, pearl, apple, button, orange, macaroni, eraser, carrot bit, sequin, scissors, keychain, piece of paper, wooden button, piece of wood, cucumber, screw, nail , cork, CD, glass jar, gem. Only your imagination sets boundaries, so check boxes and cabinets in the department, look in the kitchen and in the workshop / studio / carpentry room and pick up things that look interesting.

Allowing the children to make a hypothesis or make a guess as to what will happen to their chosen objects is a good method for getting the children’s thinking started and not getting caught up in doing it. It is very fun to drop things in water and just see what happens, but in an experiment it is also about trying to awaken the children’s ability to reflect and think about what is happening. What do you think will happen? Why? How can we get on with it?

Float or sink 2

Same material as above. Preferably more of each thing!

The working method here is to challenge what the children already know. What did you choose last time, and what happened then? How can you make it float if it dropped, or sink if it floated?

Clara chose a coin that she knew would sink. That the eraser rubber floated, she also knew this after last time’s experiment. After a while thinking about how she could make the coin flow, she tried to attach her coin to the eraser using rubber cords.

Time to try it out!

One eraser was too small to make the coin float well, but when Clara took two erasers it was better to get the coin to float.

Jet Aircraft

Experiment with air.

You will need: Balloons, thread, tape, straw, matchbox.

  1. Tie a long thread, with a piece of straw threaded, across the room.
  2. Blow up a balloon (do not tie) and tape it to the straw. Release the balloon. What happens?
  3. Now try loading the balloon by taping a matchbox under the balloon. What happens?

The experiment was created by Åsa Malmström at Österäng’s preschool, taken from lektion.se.

Memory with digital microscope

Using a digital microscope (i.e. ”Web ägget” or Wifi puck), you shoot images taken with a microscope.

Then have the children try to pair the images with the right object using the microscope. Here it is important to examine carefully as the image may have been taken by a small detail of the object you are studying.

Hint: use magnifying glass as a complement!

Then let the kids look for exciting objects, take their own photos and challenge each other.

Try to draw from your fantastic pictures.

(Thanks to Hands-on pedagogen  for the idea)

Is there sunshine are there also shadows

The sun is nice, with it can also be interesting shadows. Here are two tips for working with shadows:

In the shade of trees
Roll out the paper roll in the shade, under a tree or bush. The children draw the outline of the shadow. Older children can draw details; tree leaves and branches.
Paint the shadows.
Shadow Pictures

  1. Place an animal or other object so that it forms a clear image of the shadow drawing on paper.
  2. Draw the object’s outline.
  3. When the contour is finished, you can add details to it if you want.
  4. The shadows of an object can become an interesting peace of art.